
Tool Demonstration Script

Abstract. In this document we describe a demonstration on how to use
the StaRVOOrS tool, using a working example. On www.cse.chalmers.

se/~chimento/starvoors, in section Tutorials, a screencast showing this
demonstration can be found in under the name Tutorial on how to use
the tool StaRVOOrS. On the same website, in section Downloads you can
find the files of the working example under the name Login example files.

1 Running StaRVOOrS

In order to run StaRVOOrS, as it is illustrated in Fig. 1, the following
input should be provided: the address of the source code to be analysed
(Example/Login), the address of the ppDATE specification describing the
property to be verified (Example/prop add.ppd), and an output directory
where the files generated by the tool are going to be placed (Example).

Fig. 1. Runnig StaRVOOrS

A ppDATE specification is described on a file with extention .ppd. This
file consists1 of 5 sections:

– Imports: Lists any packages (or files) which will be used in any of
the other sections. At least there should be an import of a package
of the system to be monitored.

1 Not all sections are mandatory.



– Global: Describes the automaton (events, automata variables, tran-
sitions, states, etc).

– CInvariants: Class invariants are described in this section.

– Contracts: Lists named Hoare triples.

– Methods: Definition of methods to avoid having a lot of code on
the transitions of the automaton.

Fig.2 illustrates an example of such a file. We will use it as running
example for this demonstration.

2 StaRVOOrS ouput

Fig.3 illustrates all the files generated by StaRVOOrS when it is used
to analise the Login example. This output consists of: the monitor files
generated by Larva (folder aspects and folder larva), the files generated
by StaRVOOrS to runtime verify partially proven Hoare triples (folder
partialInfo), an instrumented version of the source code (folder Login),
the xml file used by StaRVOOrS to optimise the ppDATE specification
(out.xml), a report explaining the content of the .xml file (report.txt) and
the DATE specification obtained as a result of translating the (optimised)
ppDATE.

3 StaRVOOrS execution insights

StaRVOOrS is a fully automated tool. However, in order to have a
better understanding on what happens behind the scenes, we will explain
it in three stages.

The first stage is the static verification of the Hoare triples using KeY.
Fig. 4 shows the output produced by the tool on the terminal during this
stage. At first, KeY (taclet) options are set, which tell KeY how it should
proceed during the verification process. For the time being, we are just
using the standard options. Then, the KeY prover attempts verifying all
the contracts (i.e. the Hoare triples), one by one.

Every time a proof attempt is saturated, some information related to this
analysis is given as output in the terminal. Fig. 5 illustrates an example
of such a situation for the contract add full.

All the information given as output in the terminal is sum up in the
generated file out.xml. This file is not intended for the user, it is used by
StaRVOOrS to optimise the ppDATE specification for runtime checking.
However, in order to give to the user some understandable feedback
about what happened during the static verification of the contracts,
StaRVOOrS generates a file report.txt which briefly explains the content
of the .xml file.

The second stage correspond to the previously mentioned optimization.
On this stage, all the contracts which were proven are removed from
the ppDATE specification and those which were only partially proven
are modified to include the conditions which lead to unclosed path on a
proof.



IMPORTS { import main.HashTable; }

GLOBAL {

EVENTS {

add_entry(Object u,int key)={HashTable hasht.add(u, key)}

add_exit(Object u,int key)={HashTable hasht.add(u, key)uponReturning()}

hfun_entry(int val)={HashTable hasht.hash_function(val)}

hfun_exit(int val,int ret)={HashTable hasht.hash_function(val)uponReturning(ret)}

}

PROPERTY add {

STATES

{

NORMAL { q2 ; }

STARTING { q (add_ok, add_full, hashfun_ok) ; }

}

TRANSITIONS {

q -> q2 [add_entry\hasht.contains(u, key) < 0\]

}}

}

CINVARIANTS {

HashTable {\typeof(h) == \type(Object[])}

HashTable {h.length == capacity}

HashTable {h != null}

HashTable {size >= 0 && size <= capacity}

HashTable {capacity >= 1}

}

CONTRACTS {

CONTRACT add_ok {

PRE {size < capacity && key > 0}

METHOD {HashTable.add}

POST {(\exists int i; i>= 0 && i < capacity; h[i] == u)}

ASSIGNABLE {size, h[*]}

}

CONTRACT add_full {

PRE {size >= capacity}

METHOD {HashTable.add}

POST {(\forall int j; j >= 0 && j < capacity; h[j] == \old(h)[j])}

ASSIGNABLE {\nothing}

}

CONTRACT hashfun_ok {

PRE {val > 0}

METHOD {HashTable.hash_function}

POST {\result >= 0 && \result < capacity}

ASSIGNABLE {\nothing}

}

}

Fig. 2. ppDATE description of a property



Fig. 3. StaRVOOrS output

Fig. 4. Initiating Static Verification



Fig. 5. Output shown on the terminal during static verification

Fig. 6. Optimization and files generation after static verification

When analysing the specification shown in Fig. 2, KeY fully verifies the
contracts add full and hashfun ok, but it only partially proves the contract
add ok. Fig. 7 illustrates how the ppDATE specification introduced in
Fig. 2 would look like after the previous optimization. Note that in the
section CONTRACTS only add ok remains and that its precondition is
strengthened with the predicate !(h[hash function(key)]== null) (as
it is stated in the file report.txt) and that in the list of properties to be
verified in the starting state q the name of the proved Hoare triples were
removed.



IMPORTS { import main.HashTable; }

GLOBAL {

EVENTS {

add_entry(Object u,int key)={HashTable hasht.add(u, key)}

add_exit(Object u,int key)={HashTable hasht.add(u, key)uponReturning()}

hfun_entry(int val)={HashTable hasht.hash_function(val)}

hfun_exit(int val,int ret)={HashTable hasht.hash_function(val)uponReturning(ret)}

}

PROPERTY add {

STATES

{

NORMAL { q2 ; }

STARTING { q (add_ok) ; }

}

TRANSITIONS {

q -> q2 [add_entry\hasht.contains(u, key) < 0\]

}}

}

CINVARIANTS {

HashTable {\typeof(h) == \type(Object[])}

HashTable {h.length == capacity}

HashTable {h != null}

HashTable {size >= 0 && size <= capacity}

HashTable {capacity >= 1}

}

CONTRACTS {

CONTRACT add_ok {

PRE {size < capacity && key > 0 && !(h[hash_function(key)] == null)}

METHOD {HashTable.add}

POST {(\exists int i; i>= 0 && i < capacity; h[i] == u)}

ASSIGNABLE {size, h[*]}

}

}

Fig. 7. ppDATE description of a property



StaRVOOrS instruments the source code by adding a new parameter to
the method(s) associated to the contract(s), to be used for runtime verifi-
cation. This new parameter is used to distinguish different executions of
the same method. This change is introduced in the ppDATE specification
too. Besides, StaRVOOrS generates two files (both within a folder named
ppArtifacts): Contracts.java and Id.java. The former contains methods
which operationalise the pre-/post-conditions of contracts, which will be
use by the monitor when verifying the corresponding contract. The latter
will be used to generate unique values to be given as new parameters
added to the methods. After that, the terminal will look like Fig. 6.
The third stage corresponds to the generation of the monitor files. In
order to do so, the ppDATE specification is translated by StaRVOOrS
to a DATE specification. Then, it is used Larva to generate the monitor
files from the previous DATE. When the execution of Larva is completed,
which means that StaRVOOrS execution is completed too, the terminal
will reflect the output illustrated in Fig. 8.

Fig. 8. Monitor Generation

4 Running the application with the generated
monitor

Once StaRVOOrS finishes its execution, the simplest way to run the
application together with the generated monitor is to create an AspectJ
project within Eclipse (or an application alike) and then use it to deal
with the Java files. On this project, the instrumented files have to replace
their old version (i.e. none instrumented) in the source code and the
folders aspects, larva and ppArtifacts have to be copied in the main



folder where the source code is placed. Then, everything is set to run the
application within Eclipse or to export a .jar file.


